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Feature Denoising Using Joint Sparse Representation
for In-Car Speech Recognition

Weifeng Li, Yicong Zhou, Norman Poh, Fei Zhou, and Qingmin Liao

Abstract—We address reducing the mismatch between training
and testing conditions for hands-free in-car speech recognition. It
is well known that the distortions caused by background noise,
channel effects, etc., are highly nonlinear in the log-spectral or cep-
stral domain. This letter introduces a joint sparse representation
(JSR) to estimate the underlying clean feature vector from a noisy
feature vector. Performing a joint dictionary learning by sharing
the same representation coefficients, the proposed method intends
to capture the complex relationships (or mapping functions) be-
tween clean and noisy speech. Speech recognition experiments on
realistic in-car data demonstrate that the proposed method shows
excellent recognition performance with a relative improvement of
39.4% compared with the “baseline” frontends.

Index Terms—Dictionary training, in-car speech recognition, log
mel-filter bank (MFB) outputs, sparse representation.

I. INTRODUCTION

HE mismatch between training and testing conditions is

one of the most challenging and important problems in
automatic speech recognition. This mismatch may be caused
by a number of factors, such as background noise, speaker
variation, a change in speaking styles, channel effects, and
so on. State-of-the-art techniques for removing the mismatch
usually fall into the following three categories [1]: robust
features, speech enhancement, and model compensation. The
first approach seeks parameterizations that are fundamentally
immune to noise. The most widely used speech recognition
features are the Mel-frequency cepstral coefficients (MFCCs),
although they are susceptible to noise. Among the speech
enhancement methods, spectral subtraction and short-time
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spectral attenuation based methods are commonly used, in
which cases the underlying noise need to be estimated. Model
compensation (e.g., maximum-likelihood linear regression [2],
and Jacobian adaptation [3]) aims to adapt or transform acoustic
models to match the noisy speech feature in a new testing envi-
ronment. Most speech enhancement and model compensation
methods are accomplished by linear functions such as simple
bias removal, affine transformation, linear regression, and so
on. However, it is well known that the distortion caused even
by additive noise only is highly nonlinear in the log-spectral or
cepstral domain.

Recently, sparse representation (SR) [4] has received growing
interest in signal processing and pattern recognition. In SR a
signal is approximated by a linear combination of a few atoms
from a pre-defined dictionary. This line of research focuses on
dictionary training, i.e., using machine learning techniques to
learn an over-complete dictionary of primary signals (atoms)
directly from data, so that the most relevant properties of the
signals can be efficiently captured. The SR techniques have
been used for compressive sensing [5], face recognition [6], and
phone recognition [7]. In audio signal processing domain, SR
has been used for source separation [8], speech enhancement
[9], and robust speech recognition [10].

In speech enhancement and robust speech recognition do-
main, we have two coupled signal spaces (e.g., clean versus
noisy speech spaces, or training versus testing conditions which
may differ), and these two coupled spaces are usually related
by some mapping functions, which could be nonlinear as men-
tioned above. Most existing SR methods only consider sparse
modeling in an isolated signal space (such as a clean speech
space only or a testing condition only), and fail to consider dic-
tionary learning across different signal spaces. In such cases, it
is often desirable to learn representations that can not only well
represent each signal space individually, but also capture their
relationships through the underlying SRs.

In this letter, we propose a joint SR (JSR) technique, in which
a joint dictionary learning is performed across the clean and
noisy feature spaces, for feature denoising (or estimating the
clean features) with an application to robust speech recognition.
In the proposed joint dictionary learning, sharing the same rep-
resentation coefficients intends to capture possible complex re-
lationships between the clean and noisy feature spaces. For any
given testing noisy feature vector, we first find their sparse rep-
resentation coefficients, and then estimate the underlying clean
feature vector, which is used as input by the speech recognition
system. The proposed method differs from [9] and [10] not only
in dictionary training but also in clean speech/feature estima-
tion. Furthermore, without any linear assumption of the noisy
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Fig. 1. Effect of car noise on log mel-filter bank (MFB) spectrogram. The
speech is “4567” in Japanese from CENSREC-3 in-car database [11].

speech from clean speech required in [9] and [10], our method
intends to capture the nonlinear relationship between the clean
and noisy speech using a joint learning approach.

II. PROPOSED APPROACH

We show in Fig. 1(3) and Fig. 1(4) the log mel-filter bank
(MFB) spectrograms of speech recorded by the close-talking
microphone and distant microphone respectively (The data are
from CENSREC-3 in-car database [11].). It can be observed
that the background noise has contaminated the speech quality,
and correspondingly degraded the performance of speech
recognition. In this letter, we attempt to solve this problem by
seeking a common sparse representation and such representa-
tion should be robust to the background noise. The feasibility
is inspired from the property of linear object class (LOC)
[12], which shows that the feature locations (or pixels) in two
viewpoints of the same object could be represented by a linear
combination of the bases of the two viewpoints with the same
representation coefficients.

Let x° and x" be a log MFB output of the same speech
recorded by the close-talking microphone and distant micro-
phone, respectively. Similarly we have

L’j] =Y {(‘H (M)

J

where {d?} and {d7 } are representation basis sets of clean and
noisy speech, respectively. The reconstruction coefficients {c; }
are the common representations that we seek for capturing the
relationships between the clean and noise speech spaces.

dictionaryD”

R optimal o*

Fig. 2. Block diagram of the proposed approach.

A single sparse representation could approximate x© or x™
by a linear combination of a few atoms from a dictionary D® =

[d§,ds, ..., ,d5] orD™ = [d}.d}, ..., d%] respectively, which
is learned via
N
gz%gi;Hx? ~ D + el @)
or
N
gy NPt el

where i is the frame index and V is the total number of training
examples. v¢ (or 4™) is a penalty weight on sparsity. || - ||? and
Il - |1 denote the £>-norm and £;-norm, respectively. In order
to capture the relationships between the clean and noise speech
spaces and form a common representation across the two spaces,
we need to learn the dictionaries D¢ and D™ jointly, and then
estimate the underlying x“ from x". The flow chart is illustrated
in Fig. 2.

A. Joint Dictionary Training

leen the coupled training feature sequences {x¢} , and
{x2}& | the problem of jointly learning the d1ct10nar1es can be
formulated as follows:

N

DS

i=1

~D* +]1x} ~D"e||*) +llailli. (4)

min
D¢, D" .o

Let
x° Dec
X = |:Xn:|ﬂ and D_ |:Dn:| . (5)

Then (4) reduces to a standard sparse code problem:

N

. _Dal? 1.
glvhr};HXL ai|l” + vllell: (6)

Equation (6) is not convex in both D and a;, however it is
convex in one of them with the other fixed!.

!In our experiments, we used a Matlab package developed in [13], in which
a feature-sign search algorithm is used for optimizing c; while D fixed, and
given fixed ¢; D is learned using the Lagrange dual.
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B. Clean Feature Estimation

Once we obtained the coupled dictionaries D¢ and D", for
any given testing noisy feature vector x;’, we first find its sparse
representation in terms of D™

af = arg min ||x}' — Dnﬂli”2 + v,

(273

O]

and then estimate its corresponding clean feature vector x{ in
terms of D¢ via
x; =D, ®)
Fig. 1(5) shows the estimated log MFB spectrogram of
clean speech from Fig. 1(4). It can be found that by comparing
Fig. 1(5) with Fig. 1(4) the interfering noise noise is reduced
whereas the speech signal is enhanced. The result is that the
mismatches of log MFB spectrogram between clean and noisy
speech are reduced, which will be helpful for the speech recog-
nition system.

III. EXPERIMENTAL RESULTS

A. Database

The proposed approach was evaluated on a real in-car speech
recognition task. Noisy speech data were taken from the CEN-
SREC-3 (Corpus and Environments for Noisy Speech RECog-
nition) database [11]. The “condition 3” of the CENSREC-3
was used for training and test in this letter. The training data
were composed of 14,050 phonetically-balanced utterances cap-
tured by the distant microphone under two conditions: idling
and driving on a city street with a normal in-car environment,
and the total number of speakers for training data was 293 (202
males and 91 females). The test data were recorded by the dis-
tant microphone under 16 environmental conditions, with a total
of 14,216 utterances spoken by 18 speakers (8 males and 10 fe-
males) [11].

The speech signal was sampled at 16 kHz and windowed
with a 20-ms Hamming window every 10 ms. In the mel-filter
bank (MFB) analysis, a cut-off was applied to frequency com-
ponents lower than 250 Hz, and the total number of dimen-
sions of the filter-bank output was 24. The acoustic models con-
sist of triphone HMMs that have five states with three distribu-
tions. Each distribution was represented with 32-mixture Gaus-
sians. The baseline system was trained using 39-dimensional
feature vectors consisting of 12-dimensional MFCC parameters
and log-energy, along with their delta and delta-delta parame-
ters.

B. Experimental Settings

As shown in Fig. 2, we need training and testing data set.
In our experiments, we randomly selected 330 utterances from
CENSREC-3 training data for training the coupled dictionaries.
Nine speakers (five females and four males) in the test data
were used for evaluation. The baseline recognition accuracy
was 78.38%. We performed JSR on log MFB features2. The
estimated clean log MFB outputs were converted into MFCCs

2Log-energy parameter is also included in our experiments.

683

through Discrete Cosine Transformation (DCT), and then their
delta and delta-delta parameters were calculated. The two
coupled feature vectors are frame-by-frame aligned. Following
[14], we also extracted noisy feature vector x;' by concate-
nating 11 successive frames (five before and five after) for
estimating x{ € IR***!_ Therefore we have the following two
configurations for the JSR method.

1) JSRbs: using a single frame of log MFB outputs as x}' €

R25%L.
2) JSRbm: using multi-frame (i.e., 11-frame) log MFB out-
puts, and concatenating them into a noisy feature vector
x!' € R275x1
For JSR based methods we empirically tuned the dictionary size
and the penalty weight v by optimizing one of them with the
other fixed.

For comparisons, Generalized Spectral Subtraction (GSS)
[15] and Log-Spectra Amplitude (LSA) estimator [16], and
Mean and Variance Normalization (MVN) were applied.
Stereo-based Piecewise LInear Compensation for Environ-
ments (SPLICE) [17], in which the compensation factor is
obtained using the same stereo clean and noisy speech as that
in our proposed JSR method, was performed. Exemplar-based
Feature Enhancement (EFE) [10] was also compared3. Because
the training data, recorded by the distant microphone, are noisy,
for all methods we re-trained the acoustic models on their
processed training data.

C. Results

Fig. 3 shows the recognition results obtained form the dif-
ferent methods. It can be observed that The recognition perfor-
mance of “baseline” depend on the evaluation environments.
When the recording environments between training and test data
are not matched, the recognition correct rate can degrade into
less than 60% for the in-car state of window and air-conditioner
on high level (from Fig. 4). Carrying out the Mean and Vari-
ance Normalization (MVN) in cepstral domain is helpful for
improving the in-car speech recognition performance, and per-
forms comparably to the speech enhancement method the GSS
but not as well as the LSA and SPLICE. The SPLICE and EFE
perform better than the “baseline”, and the SPLICE provides
more gains than the EFE. When the joint sparse representation
(JSR) is employed, the recognition performance is better than
the EFE, which demonstrates the effectiveness of the proposed
JSR approach. Moreover, using multiple frames is advantageous
compared with using one frame only. The highest correct rate
86.9% is achieved by using “JSRbm” with a relative improve-
ment of 39.4% compared with “baseline”.

Fig. 4 compares the recognition performance of the proposed
method (i.e., “JSRbm”) with the LSA for the six in-car states.
It is found that compared with the “baseline”, the LSA can im-
prove the recognition performance for stationary noisy condi-
tions (e.g., air-conditioner on and window open), but it is not
effective for non-stationary noisy conditions (e.g., audio CD
player and hazard flasher on). Our proposed method not only

3In our experiment 4000 speech exemplars and 4000 noise exemplars were
randomly selected from CENSREC-3 training data, and B = 25 and 7" = 11
were adopted.
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Fig. 4. Recognition performance for six in-car states. The first five in-car states
are averaged over three driving speed conditions (i.e., idling, low-speed, high-
speech), and the hazard flasher is on only for idling condition [11]).

TABLE 1
AN EXAMPLE OF ENVIRONMENTAL SENSITIVITIES OF THE DICTIONARIES ON
THE RECOGNITION RATE FOR THE CONDITION OF DRIVING IN LOW-SPEED
WITH WINDOWS OPEN (“LW”) BY USING “JSRBS”. “LN” DENOTES THE
CONDITION OF DRIVING IN LOW-SPEECH WITH NORMAL IN-CAR STATE. “IW”
DENOTES THE CONDITION OF IDLING WITH WINDOWS OPEN. “HS” DENOTES
THE CONDITION OF DRIVING IN HIGH-SPEECH WITH CD PLAYER ON

dictionary training condition LW LN w HS
correct [%] 81.29 82.85 80.25 79.51

performs comparably with the LSA for the stationary noisy con-
ditions, but also shows its robustness to non-stationary noisy
conditions. Table I shows an example of environmental sensitiv-
ities of the dictionaries on the recognition rate when noise con-
ditions have mismatch between dictionary training and testing.
The testing noise condition is “LW” (driving in low-speed with
windows open). It can be observed that when the dictionary
training condition* is “LW’ (matched), the recognition perfor-
mance is better than those using the “IW” and “HS” data for
training the dictionaries, but worse than that using the “LN”
data, which may be explained by the fact that the “LN” data are
included in the training data of acoustic model. In general the
recognition performance is not very sensitive to the mismatch
between dictionary training and testing.

IV. CONCLUSIONS

In this letter, we have proposed a joint sparse representation
(JSR) technique for feature denoising in application to robust
in-car speech recognition. In our proposed JSR, a joint dictio-
nary learning is performed across the clean and noisy feature
spaces in order to capture possible complex relationships be-

4Other nine speakers from the test data in CENSREC-3 were used for training
the dictionary.
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tween the two feature spaces. Given a noisy feature vector (e.g.,
log mel-filter-bank (MFB) outputs or Mel-frequency cepstral
coefficients (MFCCs)), the feature vectors of clean speech
are estimated using the dictionary of clean speech. Compared
with the spectral subtraction and the log-spectral amplitude
estimator, the proposed method shows its superiority in terms
of a significant improvement in recognition performance in
the speech recognition experiments conducted in 16 realistic
driving conditions.

In our experiments, the data for training the dictionaries are
from the training data of acoustic model. In order to develop a
data-driven in-car recognition system, we need to develop an ef-
fective algorithm for automatic adapting the sparse representa-
tions to different driving conditions. Moreover, when the system
encounters a new type of noise, a soft or fuzzy logic decision is
desirable and will be our future work.
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